

Wildland Fire Intelligence

Carl Pennypacker, Lawrence Berkeley National Lab (LBNL) Tim Ball, Fireball International October 16, 2018 *FUEGO*

- ACTIONABLE INTELLIGENCE
- EARLY DETECTION
- DEEP LEARNING ANALYSIS (FIRE & FUELS)
- IMPROVED SIMULATION => PRIORITIZATION

The Intelligence Cycle

Where information is collected and transformed to actionable intelligence in support of all aspects of operations

Infamous Fires Fuego Could Have Minimized

Two Examples of Delayed Fire Detection

Corral LAC/CDF Nov 24, 2007 Malibu Bowl

Cause: Bonfire at The Cave at top of Malibu Bowl

Initial Report: 3:29 AM, 100 acres

Weather: 59°F, RH 8%, 27 MPH, G36, Northerly. RED FLAG conditions. Bonfire detectable so LACoFD Patrol could have suppressed.

Totals: 4901 Ac, 49 Residence, 31 other structures, 27 Structures Damaged, 10,000 people evacuated

Rim USFS-STF Aug 17, 2013 Tuolumne River Drainage Cause: Hunter's Cooking Fire Initial Report: 3:25 PM, Air Tanker Pilot, 40 acres. Weather: 87°F, RH 17%, 15 MPH, G21, Westerly Totals: 257,314 Ac, 11Residence, 98 Outbuildings, 3 Commercial Buildings,

Exportable Wide Area Surveillance with Real Time Exploitation Military and Civil Applications

Shinjuku Cocoon, Tokvo

Fireball Leadership

J. Timothy Ball President

B.A. & M.A. Biological Sciences, Univ. of California, Santa Barbara. Ph. D. Biological Sciences, Stanford University.

Experience: 15 Years professor at the Desert Research Institute. 19 years CEO Fireball

Research: Linkage of ecosystem and atmospheric process through remote sensing; Fire Ecology Fire Behavior.

Ryan C. Dotson Vice President

B.S. Mathematics & M.S. Applied Mathematics, University of Nevada, Reno

Experience:

20 years in the software industry 19 years Vice President, COO of Fireball

> Datum: NAD 83 Projection: UTI Degree & Decimal Minutes

Research: Numerical Modeling, Statistics, and their use in Image Processing and Navigation John C. Arvesen Senior Collaborator

B.S. Engineering Physics, Univ. of California Berkeley. M.S. Mechanical Engineering, Stanford University.

Experience:

35 years at NASA

20 years with NASA U-2/ER-2 High Altitude Branch.

Long tenure as Branch Chief included characterization of atmospheric chemiciation

Ozone Hole and development of many airborne sensor systems.

ARGUS Surveillance System on NASA WB-57

Designed for One Standard WB-57 Pallet

Standard Configuration (400 mm lenses)

	Altitud	Syste	Nadi	Oute	Grou	Forwar	Side-	Fram	Max	Practic	Nominal	Area/Fligh
	е	m	r	r	nd	d	lap	е	Мар	al Map	mapping	t
		Swath	GSD	GSD	Spee	Overla		inter	Rate	Rate	duration	
					d	р		val				
	15,200	59	24	37	325	39%	20%	3.3 s	9900	6,400	3.25	20,000 sq.
	m	deg.	cm	cm	kts				sqkm/hr	sq.	hours	km
	50,000	16.4	9.6	14.8						km/hr.		7,700 sq.
	Ult f a-w	ibre Cor	nfiģura	atiḋh (Mix of	400, 20	0, 100,	85				mi.
	<u>Mtituda</u>	Svetom	Nadir	Outor	Croup	Forwar	Sida lan	Eramo	Max	Bractical	Nominal	Aroa/Elight
	Allitude	System		CCD	Gioun	FUIWai	Side-lap	later	Max			Alea/Flight
		Swath	GSD	GSD	a	a		Interva	мар	мар кате	mapping	
					Speed	Overla			Rate		duration	
$\left \right $						р						
$\left\{ \right\}$	15,100	138	1.2 m	1.2 m	350	70%	20%	5 s	23,880	15,533 sq	3.25	50,483 sq.
$\left \right \right $	m	deg	47 in	47 in	kts				sq.km/h	km/hr	hours	km
	50,000	18.4							r			19,491 sq.
ir	ft.	km	al Sorv	icos								mi.
		114		ices								

Argus, Aware ® and Tsunami Cooperate t Recognition, Localization, and Analysis

Fireball's Argus Large Area High Res Camera

Tsunami Telescope slews to coordinates provided by Argus

AWARE® Real Time Image Exploitation Software

Image "Waterfall" display Image Geo-referenced Image enhanced Full Res display of selected location Image "chipped" to relevant size Image "geo-chip" transmitted off aircraft via multiple networks Target coordinates passed to telescope Recall of image from Database by location or time (for comparison). Geo-Context images transmitted

> Telescope Still Frame and Video transmitted via Mil-Star

Argus in Operation:

35 seconds of imagery from 65,000 feet. Houston 12 inch GSD; 9 miles along-track, 13 miles cross-track 75,000 acres

Fireball International

National Soccer Stadium, Bamako, Mali

ÔD

1.

用。

1

-

1.5

-

.

m

.....

NATIONAL NERARED OPERATIONS

The U.S. Forest Service National Infrared Operations (NIROPS) Program: 2016 NIROPs Closeout

November 02, 2016

OPERATIONS

PHOENIX System Specifications

Two channel thermal IR line scanner, 1680 pixels per scan line

NATIONAL, MERARED

8-12 µm band for background terrain (B channel)

No absolute calibration

Detections from kA-B

k is < 1 and varied by operator to subtract background from the mid-wave.

These two characteristics are among those that forces human interpretation precluding real-

Instantaneous Field of View: 1.25 milliradian							Total Fie	eld of	View: 12	0 degrees	Cross-track pixels: 1680				
								Spatial Detection Limit at 1000 degrees F							
Altitude			Nadir	Nadir		Outer	Outer		Night time NADIR			uter	Swath, km	Swath, miles	
	Ft, AGL		GSD, m	GSD, ft		GSD, m	GSD, ft		Sq. cm	Sq. Inches	Sq. cm	Sq. Inches			
Nomir al	10,000		3.8	12.5		6.6	21.6		322	50	963	149	10.6	6.6	
Usua	15,000		5.7	18.75		9.9	32.5		724	112	2168	336	15.6	9.9	

Flight line Fight line F

GSD = Ground sample Distance, the length of the sides of one pixel projected to the ground; AKA pixel size

NATIONAL PHOEPIX Spatial Specifications

Instantaneous Field of View: 1.25 milliradian						Total Field of View: 120 degrees Cross-t						rack pixels: 1680		
									Spatial I degrees I	Detection =				
Altitude, Ft		Nadir	Nadir		Outer	Outer		Night time NADIR		Outer		Swath, km	Swath, miles	
			GSD, m	GSD, ft		GSD, m	GSD, ft		Sq. cm	Sq. Inches	Sq. cm	Sq. Inches		
	10,000		3.8	12.5		6.6	21.6		322	50	963	149	10.6	6.6
	15,000		5.7	18.75		9.9	32.5		724	112	2168	336	15.6	9.9

Two Mid-wave Fireball Fire Finder

Instantaneous Field of View: 0.66 milliradian						Total Fie	eld of	View: 87	degrees	Cross-track pixels: 2300				
									Spatial I degrees I	Detection I =				
Altitude, Ft		Nadir	Nadir		Outer	Outer		Day & Night NADIR		Outer		Swath, km	Swath, miles	
			GSD, m	GSD, ft		GSD, m	GSD, ft		Sq. cm	Sq. Inches	Sq. cm	Sq. Inches		
	10,000		2	6.6		2.7	8.8		88	13.6	160	25	4.9	3.7
	15,000		3	9.8		4.1	13.4		198	30	369	57	7.4	5.2

IR Data delivered from plane

NATIONAL, MERATIONS

Orthocorrected tiff w/ fire detects

"raw" tiff

Orthocorrected color tiff

Waldo Canyon Fire June 25, 2012, 2253 hrs

Some Points To Remember About Phoenix Imagery

OPERATIONS

What is captured in the imagery is the relative variation in heat across the fire area

NATIONAL, MERARED

- No one-to-one correspondence between pixel values and ground temperature
- The technician can adjust the heat "threshold" value during runs across the fire area.
 - Ø Doesn't allow for automated extraction of heat areas
- There is more heat in the imagery than just the red (DN = 255) pixels!
 - Requires an Infrared Interpreter (IRIN) to derive products

These images are from one section of the Zaca Fire in Santa Barbara and Ventura Counties California (2007) taken by the Autonomous Modular Scanner (Built NASA Ames Research Center) flying on the Ikhana (Predator B) Unmanned System demonstrate the different information about a fire that can be understood at different wavelengths.

Near Real-Time, High Resolution, Day/Night Mapping and Fire Characterization **FIRE-FINDER** 19 cameras 3 Infrared Wavelengths Wide Swath for Perimeter & Fires

Time Differential Fire Map Current Perimeter and Activity vs. Previous Perimeter

Fire Activity North American Incident TNF-001562 16 Aug 2013 0830hrs

In a few seconds you can understand:

 where the fire is moving &
 the topography where the fire is going to be hard to catch.

NATIONAL Fire-Finder is Scalable ATIONS

Three Wavelength Fire Analysis & Intel Dissemination Concept & Why it is Necessary

Detection, Accurate Localization & Characterization, Mop-up are Actionable Intel

Analyze Data On-Board in Real Time

Extract Actionable Intel: Perimeter Location Fire Front Width Fire Front Power

Rate & Direction of Spread

Put these in the context of:

and Threat to Values

Wind, Slope, Exposure, Fuel

Pick the bands that tell what you need to know.

Format and

product.

Disseminate the

Intel as instantly

understandable

at high resolution. Fill the payload

bay as appropriate for altitude.

Aircraft with LARD

IANSA Real Time, Two-Way, Intel Data Links

Be systematic Mow the lawn. This is not a military, zoom-in problem. Context is everything.

FIREBALL Dire-Finder Buffets Rations

- 1. FireFinder can track fires in day and night. (NIROPS is night only.) This is accomplished using three well-chosen wave bands.
- 2. All cameras internally calibrated (NIST Traceable) and produce 14 bit data so that data is consistent comparable, and of science value.
- 3. Maps of

ATIONAL

- a. fire perimeter
- b. total intensity (radiative energy released)
- c. flame length (safety and tactics)
- d. rate and direction of spread (simple linear projection updated each map cycle)
 e. spotting frequency and spotting distance (characterizes most dangerous rates of spread)
 generated immediately on the aircraft (no delay waiting for IR Interpreter).
 NWCG GIS standard format with additions. Can be continuous, as needed.
- 4. Finished maps and GIS data transmitted off the aircraft in real-time. Using all available networks, the intelligence can be "pushed" to firefighters on the ground and users on the internet. Products remaining available on the cloud. (Networks include, P-25 Radio, Satellite, Cellular, Wi-Fi, Military Grade Mesh Networks)
- 5. In mop-up the system finds smoldering materials as small as 3 square inches and down to 250°F. (Norceomparison) NIROPIS detention limits are 50 square inches and 1000°F)

High Altitude, Long Duration, Solar-Electric Unmanned Vehicle

- Continuous station-keeping where threat is greatest
- Patrol large areas or track fire movement
- Real-Time, High Resolution, Day/Night Mapping and Fire Characterization
- Data transmitted direct to the Fireline

Drone America, Phoebus

Intel is a force

- Long-wing, solar, & engine variant of existing aircraft
- Initial Flight, 9 month after funding.
- ✓ Flight above the NAS.
- ✓ Balloon carries aircraft aloft.
- Well along path to FAA Altitude & BVLOS approval for decent (for different mission).
- Payload: a light weight variant of Fire
 Finder
 Finder