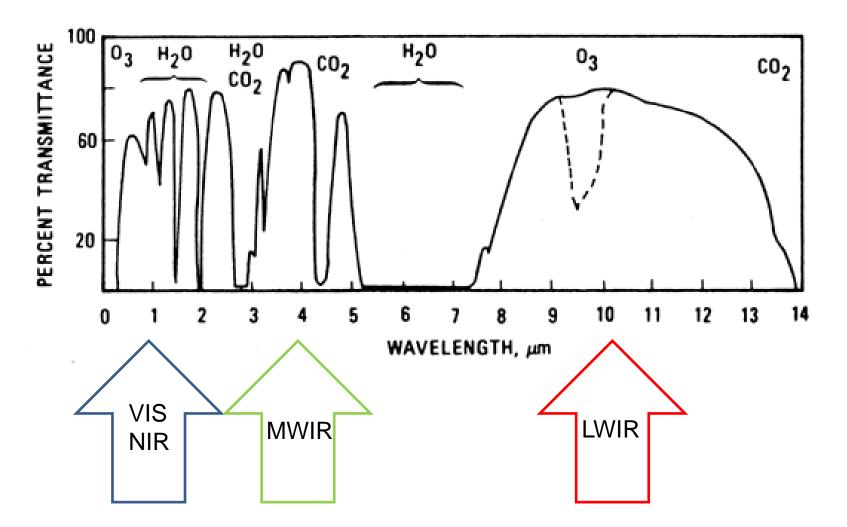
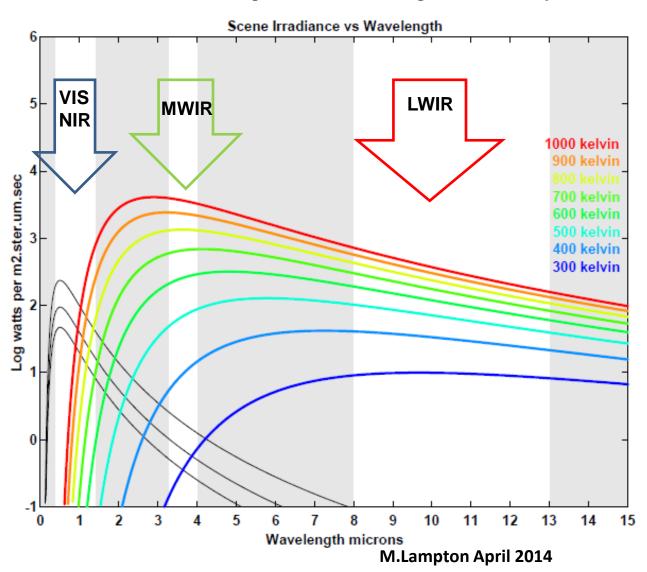
FUEGO Airborne Signal/Noise Study using LWIR Microbolometer Array Cameras


Mike Lampton Space Sciences Lab UC Berkeley 10 April 2014

Artwork: Robin E Lafever

Background: NASA photo


Atmospheric Transmission vs Wavelength

http://www.fao.org/docrep/003/t0355e/t035

Irradiances in Three Wavebands

Black: Noon Earth, Albedo=0.1, 0.2, 0.5 Blue: 300K, ϵ =1, Earth day or night Other colors: Fire signatures increasing effective temperatures

VIS:

- Excellent scene context
- Excellent angular resolution
- Huge applications & market
- Cheap lenses & sensors
- But ... little or no fire signal

MWIR:

- Best possible fire S/N ratio
- Good angular resolution
- But...cooled sensors
- And... heavy, bulky, hungry
- Tiny market
- Still most costly technology

LWIR

- OK fire S/N ratio
- · Variety of lenses and sensors
- Midsize market
- Not too costly

Microbolometer-Array Cameras for the LWIR

Camera body: 70mm cube, 230 grams 1024 x768 pixels: each 17µm square noise = 0.05 kelvin RMS; LWIR 8-13 µm thermal band 2W electrical power; Ops -40C to +60C 14 bit CameraLink input/output

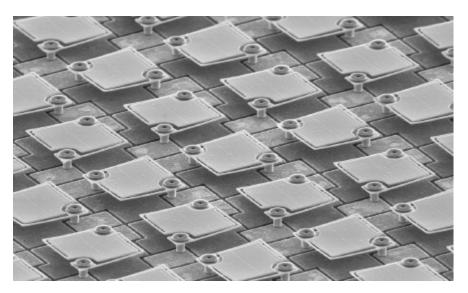
many lenses...

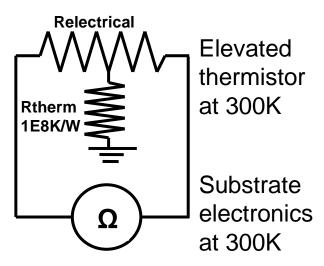
50mm f/1.0 HFOV=20° Manual focus

50mm f/1.2 HFOV=20° Fixed focus athermal

15-100mm f/1.4 HFOV=9.9-68° Continuous zoom motorized focus

25-150mm f/1.4 HFOV=6.6-40° Continuous zoom motorized focus


25-225mm f/1.5 HFOV=4.4-40° Continuous zoom motorized focus


M.Lampton April 2014

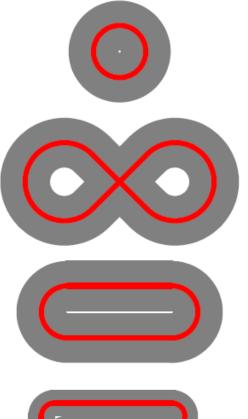
A Warm Microbolometer Model

based on the CEA LETI/IR-FPA model

NEDT, K	0.054
Pixel, µm	17
EBW, Hz	100
Rth, K/W	1.0E+08
TCR, per K	0.03
TempResponsivity V/K	0.011
therefore Vnoise, V	5.94E-04
FillFactor	0.60
Absorption Effic	0.60
PowerResponsivity V/W	4.0E+05
NEP=Vn/R, W	1.50E-09
D*, cm √Hz/W	1.13E+07
Becker, S., et al Proc SPIE	8541 (2012).

Observatory Assumptions for LWIR S/N Estimates

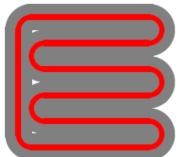
Payload altitude, k	km <mark>20</mark>	
Cloud conditio	ons <mark>clear</mark>	
Operating wavelength, µ	ւտ <mark>10</mark>	
Operating bandpass, µ	ւm <mark>4</mark>	
Fire effective temperature	, К <mark>800</mark>	
Fire irradiance, w/m ² µm.st	ter <mark>237</mark>	<< Planck law


Results: Four Altern		_011000			+
Camera and Lens Assumptions					
Pixel size, μm	17				
Pixels per array side	1000				
Throughput, filter * QE	0.3				🖌 🖌 Trying
Lens aperture, mm	40	50	60	100	Kfour
Lens focal length, mm	80	100	120	200	
Pixel size on ground, nadir, m	4.3	3.4	2.8	1.7	f/2
Diffraction diameter, nadir, m	12.0	9.6	8.0	4.8	lense
Sampling, pixels per diffraction diam	2.8	2.8	2.8	2.8	
Angular field, degrees	12.1	9.7	8.1	4.8	
Linear field at nadir, km	4.25	3.40	2.83	1.70	
Tview one pass at nadir, 150kts, sec	57	45	38	23	
Pushbroom width, ten cameras, km	71	45	34	18	
Warm-camera Microbolometer Array					
Exposure time, s	0.01				
Assume D* (cm rootHz/W) =	1.00E+07				
Noise bandwidth, Hz	100				
NEP, watts/pixel	1.7E-09	1.7E-09	1.7E-09	1.7E-09	
Filled-pixel fire signal, watts	1.4E-08	1.4E-08	1.4E-08	1.4E-08	-
Signal to noise ratio, one exposure	8.4	8.4	8.4	8.4	
Signal to noise ratio, one pass	348	311	284	220	

These are fabulous signal-to-noise ratios: reliable fire detection

A Few Airborne Surveillance Flight Patterns

Gray: Survey Region Red.


Red: Flight Path

Circles: continuously on a single target. If swath=30km & radius=15km, circum=90km

Eights: frequent returns to one spot but also some upwind & downwind coverage

RaceTracks: dense coverage but also extended downwind coverage

Boustros: completely reprogrammable in NS and EW coverage but area has a direct cost to reobservation frequency

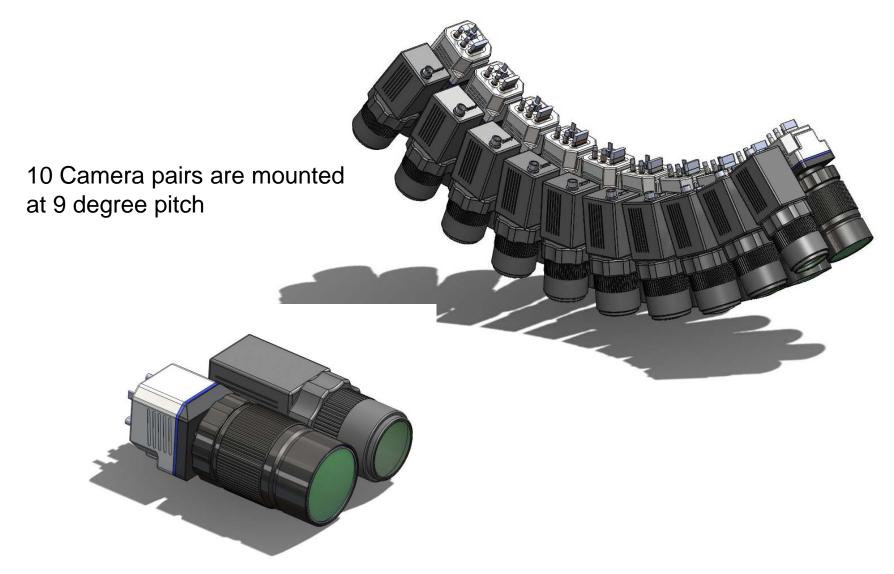
Moving Platform OK?

	100 Knots (50m/sec)	150 Knots (75m/s)	200 Knots (100m/s)
Single-frame ground motional Blur at Texp=0.01s	0.5m OK	0.75m OK	1m OK
Scene revisit time at 90km flight path complete circuit	30 minutes	20 minutes	15 minutes
Image coadding time per visit at 3km view along flight path	1800 frames Huge S/N ratio	1200 frames Huge S/N ratio	900 frames Good S/N ratio

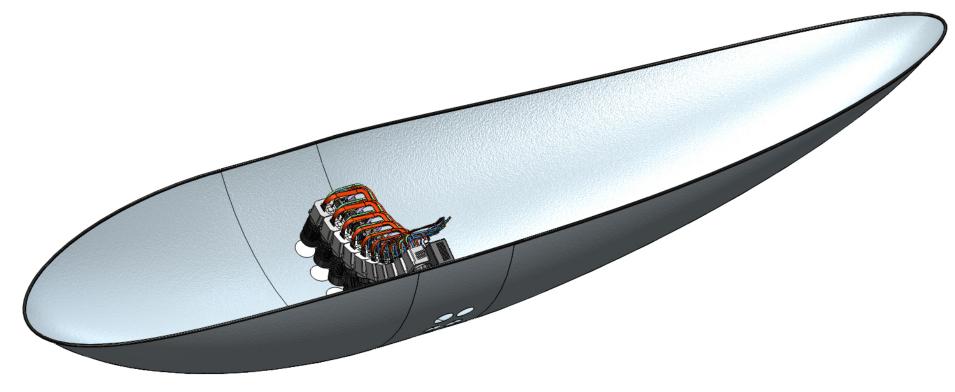
Yes ... Moving Platform is OK

Payload Concept from Robin Lafever

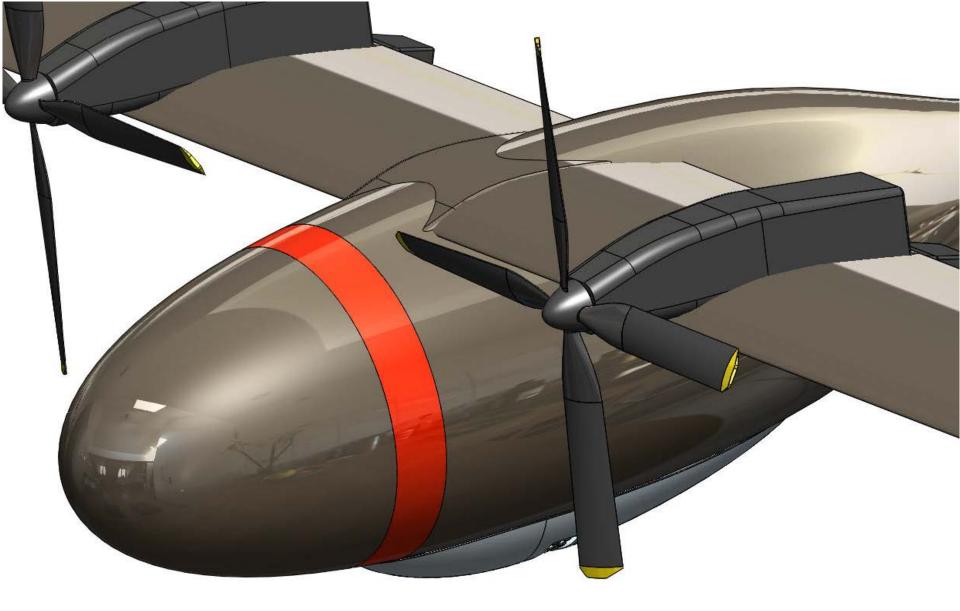
Basic Instrument components:


MWIR Camera based on ATOM 1024 with generic lens attached

VIZ Camera based on GOBI frame with generic lens attached

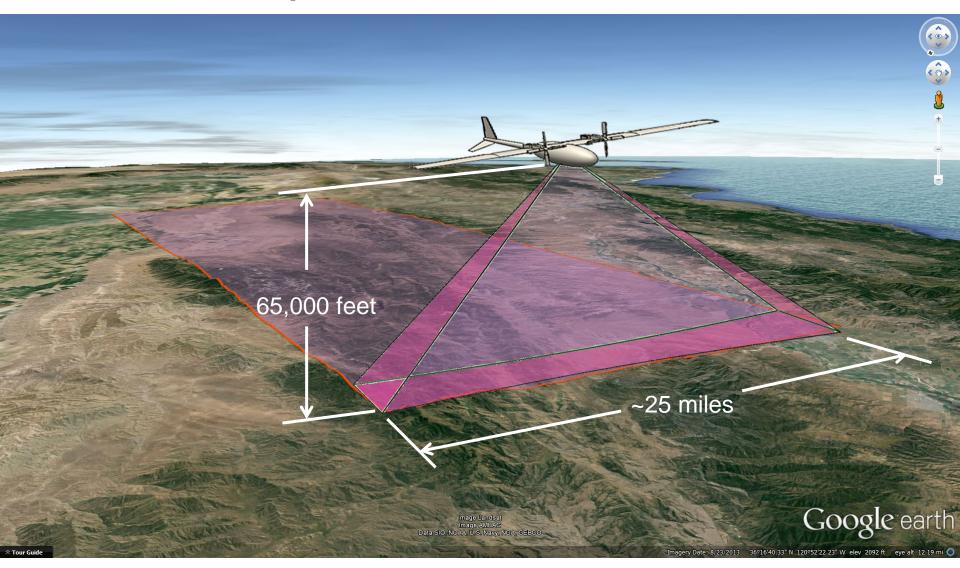


Payload Concept Instrument Array

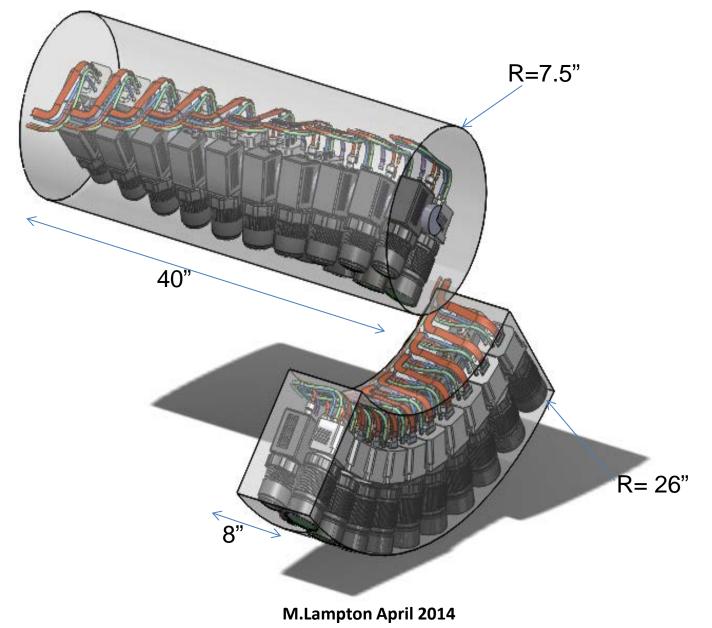


Payload Concept 'Canoe'

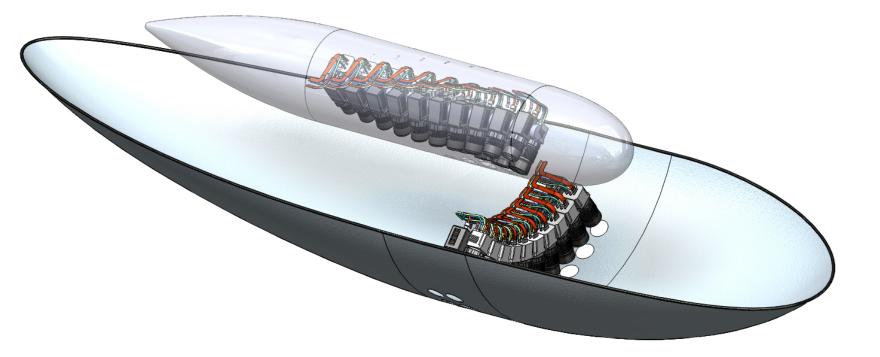
A Canoe is an instrument carrier bay that is mounted to the



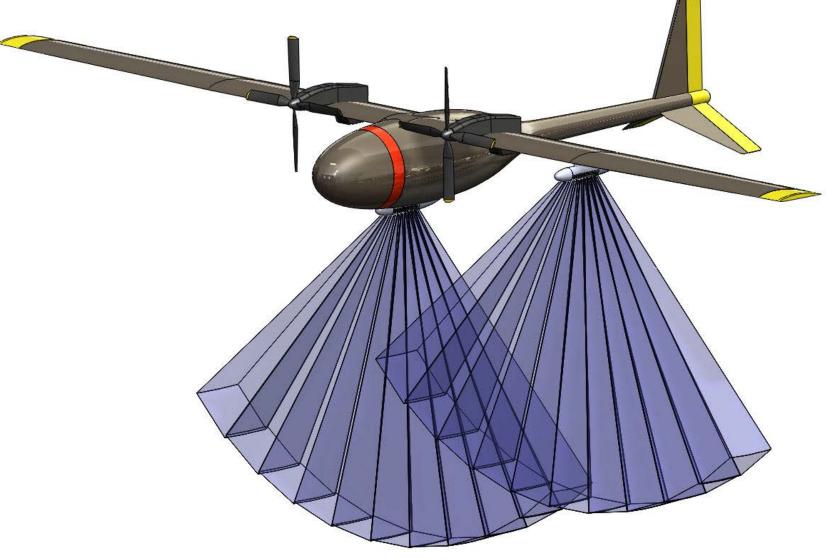
Camera array is mounted in its canoe with downlooking views in a pushbroom port-to-starboard arrangement.



Airborne platform with Canoe


Nominal scan profile

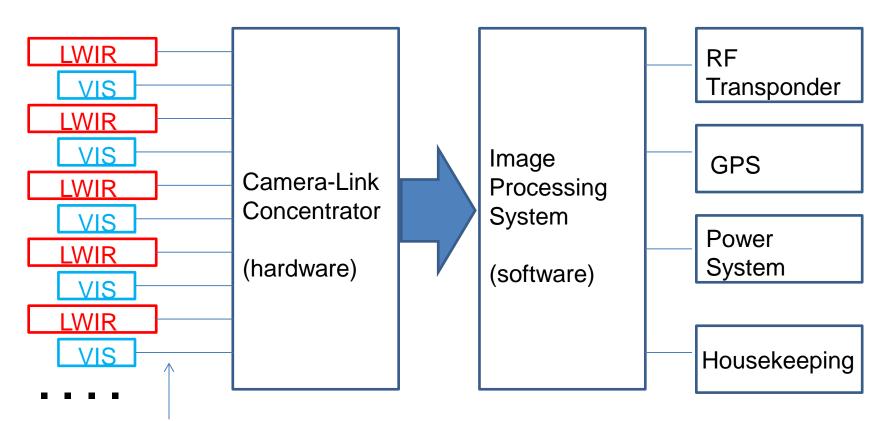
Alternate packaging options



Alternate packaging options --- Canoe Vs Pod

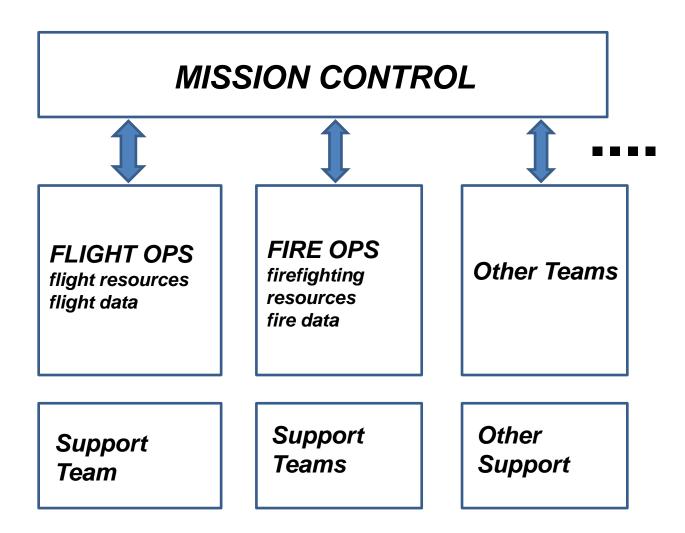
Alternate packaging options

Canoe and Pod have similar Observation patterns



Data Processing Tasks

- Gather raw images the IR and the VIS cameras
- Gather time critical ancillary data
 - GPS, vehicle attitude, yaw rates
- Clean, remap, coadd pixel data onto geospatial grid
- Detect & classify unusual features
- Create a list of hotspot groups with thumbnails
- Downlink hotspot list with engineering data
- Receive list and evaluate engineering data
- Prioritize hotspot list as to urgency
 - Hotspots growing? heating up? moving?
 - Requires real time GIS support
- Distribute to firefighting team as appropriate



Flight Systems Overview

INPUT raw data from cameras: Each camera: 1MPix, 2 bytes/pix At 30 frames/sec: 60MB/sec 20 cameras together: 1.2GB/sec OUTPUT useful data to downlink: Each hotspot: 6kBytes 100 hotspots/minute: 10kB/sec One scene map/minute: 16kB/sec

Ground Systems Overview

Shovel Ready?

-----VIS Cameras with Lenses------

Allied Vision Technologies: Mako, Guppy, ... Imaging Source: 8 models, moho or color Sony: ~80 models; monochrome, color Thor Labs: ~ 12 models, monochrome Basler: ~ 7 models, mono and color PixelLink: 5 models various interfaces JAI –PULNiX family: 8 models, mono, color ... too many more to list

-----LWIR Cameras with Lenses------

SpectralCameras "Gobi-640" A-Si, 17um, 50mK DRS "UC640-17" VOx 17um 50mK Jenoptik "VarioCam" 1024x768 50mK 1100g ICI "7640 P-series" 640x480, VOx, 40mK, 1W, USB. Sofradir "Atom-1024" A-Si, 17um, 54mK, 2W, GigE FLIR "Quark-640" VOx, 17um Selex-Galileo "Alice-640" VOx

----IR Lens and WindowSuppliers-----

ElectroPhysics / Sofradir / IRCores Edmund Optics FLIR Systems / Indigo Operations Jenoptik Optical Systems Division New England Optical Systems NovoTech Incorporated "Ocelot" series Ophir Optics

M.Lampton April 2014

Field Testing Possibilities

* Mountaintop tripod setup viewing test burn area

- * Manned rental helicopter patrolling test burn area
- * Remote-control UAV patrolling test burn area

Example aircraft from UAVfactory.com (U.K.) camera pod from ISPoptics.com (Latvia)

Conclusions and Future Work

- Microbolometer LWIR cameras appear to do the job!
- Cameras, lenses, software drivers all available
- Hardware R&D effort: high throughput concentrator
- Still needed: ground & field validation of SNR assumptions
- Still needed: image fusion & coadding software
- Still needed: hotspot detection & extraction software
- Still needed: guidance by the firefighting community
- And of course: engineering support and a student!