Transformation of Raspberry Pis to Detect Fires for

the Fire Urgency Estimator in Geosynchronous Orbit
(FUEGO)

Woodrow Wang,'* Eugene Tian,! Nicolas Captier,2 Robin Lafever,® Carl Pennypacker?

!College Station High School,
4002 Victoria Ave, College Station, TX 77845, USA
2University Pierre et Marie Curie, 4 Place Jussieu, Paris 75005, France
3Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94705, USA

*To whom correspondence should be addressed: E-mail: woodywang153 @gmail.com

11 August 2015

Abstract

With a recent surge in forest fires throughout California, the demand for a reliable fire ur-
gency estimator has dramatically risen. This study illustrates the transformation of cheap
Raspberry PiCamera modules into efficient fire detectors that can be mounted onto airplanes
and drones. By scanning pixel properties of infrared and visible light images, the FUEGO
PiCameras’ images can rapidly alert local fire departments of potential fires. In order to
be placed in production, the system must meet three critical requirements: (i) the system is
motile and not restricted by any wires, (ii) the system easily mounts to an airplane or UAV,
and (iii) the system identifies fires with minimal false alarms so as not to waste resources.
At the moment, the FUEGO PiCameras examine heavily processed images with perhaps
slightly distorted spectral properties; ideally, extracting raw data images would more accu-
rately display the true spectral properties of the image. Regardless, at an affordable cost,

the current Raspberry Pi system accurately identifies fires with minor deficiencies.

1 Introduction

As forest fires become a daunting concern for life
in California, researchers at the Lawrence Berke-
ley National Laboratory (LBNL) have sought to de-
velop an efficient fire detection system. The recent
surge in conflagrations across California exhorts re-
searchers to take action.

The Fire Urgency Estimator in Geosyn-
chronous Orbit (FUEGO) seeks to place a rela-
tively ordinary infrared satellite into orbit to scan
a fixed geographical latitude for fires (Pennypacker
2014). Without notable funding and an urge
to move on from the brainstorming phase, the
FUEGO team has chosen to begin implementa-
tion of an altitude-layered detection system begin-
ning with Raspberry Pis (RPis). Raspberry Pis are
low cost, credit-card sized computers with Python
compatibility. They can easily be manipulated to
take high resolution pictures with different kinds
of cameras and filters. These light and portable
computers work well while mounted on planes or
drones due to their size and facile connectivity.
Hence, this project chronicles the design of a fire
detection assembly using cost-friendly Raspberry
PiCameras.

As the PiCamera’s role is to take pictures while
mounted on an unmanned drone or plane, we seek
a system capable of being remotely controlled via a
laptop. Thus, we experiment with designs for fea-
sible mounting mechanisms for an octocopter pro-
vided by LBNL’s nuclear science research division
and a Cessna 172. With funding severely restricting
purchases of legitimate infrared detectors, which
could cost many thousands of dollars, inference of
spectral properties in individual pixels is necessary.
In order to identify a forest fire, we search for a
unique spectral fingerprint to discern fire from re-
flected light. The PiCameras mount onto airborne
systems and snap pictures seconds apart from each
other. Then, software runs through the photos pixel
by pixel to examine properties that might identify
as a fire.

In this project, we are using two Raspberry

Pis. The Pi referred to as the VisiPi takes pictures
in the standard visible light spectrum; the other
Pi referred to as the InfraPi has a camera board
that permits infrared light as well as visible light.
By adding a Wratten 87 filter to only permit light
greater than 770 nm and essentially block visible
wavelengths, we create an affordable, makeshift in-
frared camera.

The paper is organized as follows. In Section 2,
we describe the configuration of the RPis to take re-
liable pictures through remote control and the anal-
ysis of the Pis’ physical properties. In Section 3,
we briefly discuss the implications of mounting the
RPis to a drone or plane and the parameters sur-
rounding the design. In Section 4, we present the
thoughts behind the still developing Python soft-
ware to discern fires in the RPis’ photos. Finally, in
Section 5 we discuss and summarize the results of
our work while presenting future issues that require
resolution.

2 Configuration of the Rasp-
berry Pis

*all devices required to be plugged into power outlet

Figure 1: Simplified schematic view of the orig-
inal Raspberry Pi setup. Credit: Sormeh Yazdi,
Wellesley College.

The original setup of the Raspberry Pis was bulky
and not feasible for flight. It required a desktop,
keyboard, and mouse for each Pi, as well as mul-
tiple HDMI cables. The initial setup also required
AC adapters for the RPis, which would not neces-
sarily be available on a drone or plane.

With reduction of wires in the setup required,
we sought to establish a remote desktop connection
to the RPis. After thoroughly scavenging around
Raspberry Pi tutorials, we initially thought the
best method of remotely accessing the Pis would
be through multiple Ethernet connections. Since
WiFi is not necessarily readily available univer-
sally, accessibility may be hindered if our cameras
fly above a remote mountain. Thus, by setting up
static IP addresses for both the Pis and a laptop,
we could access both Pis through two separate re-
mote desktop connections as long as Ethernet ca-
bles were available.

At the time of implementation, this solution
seemed acceptable; with the implementation of an
external battery pack, we could now execute the
code for taking pictures anywhere without the re-
quirements of a power outlet and heavy monitors.
This setup was actually tested on a flight through
primitive taping of Ethernet cables along the belly
of the plane, but the arduous work of adhering and
removing the cameras and cables from the plane
probed new development.

With small WiFi dongles on the Raspberry Pis,
a device to device connection or ad-hoc network
with the Pis can be established. Essentially, the ad-
hoc network works similarly to a Bluetooth con-
nection between one’s phone and a laptop. After
several days of failure, we successfully forced the
RPis to emit an ad-hoc network. At this point, we
can access the Pis without the need of WiFi routers
or any potentially tangling wires. With a decen-
tralized wireless network that does not require any
existing infrastructure, the RPis are not limited by
the burden of carrying routers and Ethernet cables.
With the ad-hoc network in place, the system can
truly be remotely controlled from any location on
Earth.

Figure 2: Schematic view of the condensed Rasp-
berry Pi system capable of remote access through
an ad-hoc network. The orange tabs protruding
from the Pi represent the WiFi dongles required for
emission of the ad-hoc network. Credit: Sormeh
Yazdi, Wellesley College.

2.1 Physical Properties of the Pi

Before testing the Raspberry Pis in the field
with legitimate fires, we had to calculate their phys-
ical properties. By placing a meter stick on the
ground and taking pictures from varying heights
above the target, we calculated the horizontal, ver-
tical, and diagonal field of view to a high degree of
accuracy. Furthermore, using simple trigonometry
and the respective RPi’s field of views, we found
the size of individual pixels at varying altitudes of
flight. The results are summarized as follows.

length of a pixel depending on the altitude

©
=]

— default resolution
— maximum resolution]

~
=)

length of a pixel in cm
N w B w (=)
o o o o o

=
=)

0 100 200 300 400 500
Altitude in m

Figure 3: Graph of individual pixel size versus alti-
tude, illustrating the fine resolution the PiCameras
can reach while being remarkably cost-effective.
The default resolution line shows pixel size at vary-
ing heights when the images taken are 640 x 480
pixels; likewise, the maximum resolution line de-
picts pixel size when images are 2592 x 1944 pix-
els.

The specifications of a variety of properties
are summarized in Table 1.These results were con-
firmed by measurements taken from FUEGO’s first
trial flight (Wang, et al.).

2.2 Python Code for PiCameras

The Raspberry Pis are Linux-based single
board computers with Python programming com-
patibility. Using Python 2.7, we are able to create
software that takes pictures with nearly one second
intervals between photos.

The code has several parameters that currently
require user input. Upon execution, the Python pro-
gram asks for the length of time for taking pic-
tures, the interval of time between pictures, and
the name of the file. Potentially, if the system is
mounted on a drone or unmanned system without
the possibility of user input, these required param-
eters can be reduced to default settings; however,
default settings preclude facilitated manipulation of
useful variables during data collection.

The Python code also automatically creates a
text file with timestamps of when each picture was
taken. This is crucial for the image analysis soft-
ware to align photos from the respective InfraPi
and VisiPi. We attempted to configure a GPS mod-
ule on top of the Raspberry Pi circuit board but
ran into some issues while soldering the unit. Ap-
parently, adding the Adafruit Ultimate Pi Hat GPS
would prevent the transmission of our ad-hoc net-
work, which is unacceptable in terms of operating
the system. Thus, a novel GPS system is urgently
required.

Table 1: PiCamera Properties and Specifications

Properties of the PiCamera Specifications
Dimensions 25x20 x 9 mm
Weight 3g

Sensor OmniVision OV5647
Default sensor resolution 640 x 480 pixels
Maximum sensor resolution 2592 x 1944 pixels
Horizontal field of view 54 degrees
Vertical field of view 42 degrees
F-Stop/Aperture 29

3 Mounts for the PiCamera
System

On the initial flight test, we affixed the two Rasp-
berry Pis and the external battery pack onto a rect-
angular, flexible board. We then adhered the entire
board to the belly of a Cessna 172 with military-
grade tape. While the shoddy setup theoretically
works, the longevity of such a system is suspect
(Wang, et al. 2015). Applying and removing the
tape proves to be an arduous hassle. Thus, we have
begun designing mounts for a system that could
be relatively easily built in a machine shop at any

-

functional workshop or even the machine shop at
the Lawrence Berkeley National Laboratory.

With the RPi’s horizontal field of view greater
than 50 degrees, the most suitable part of the air-
plane for mounting seem to be the footstep, strut
of the landing mechanism, or the belly of the
plane. If the mount is too bulky, it could in-
duce life-threatening aberrational motions on the
plane, severely compromising safety and the effec-
tive capturing of photographs. Safety, of course,
is of utmost importance when designing a mount.
Below are a few preliminary designs that seek to
minimize any unbalancing of the plane.

—

Flight Pak Fitup STEP mount concept

Figure 4: Schematic design of the mount for the footstep of a Cessna 172, with an upper view and
multiple side views of the step mount. Credit: Robin Lafever, LBNL.

The step mount appears appealing because the
footstep supplies a sufficient area for a sturdy
clamp. The plank for the RPis would be placed
in the air stream to reduce drag in the wind. With
a streamline design, the mount in Figure 4 aims to

reduce vibration in flight. Although, one apparent
flaw is the inability to assure that the plank would
not shutter minutely in the wind; even small vibra-
tions could drastically compromise the quality of
our images.

Figure 5: Schematic design of the mount for the strut of the Cessna 172’s landing mechanism, with an
upper, side, and front view. Credit: Robin Lafever, LBNL.

A mount on the strut of the landing mechanism
appears favorable because it allows two clamps to
clutch onto the struts. This design requires slightly
more machining, for the angles must be measured

perfectly to ensure tilted pictures are not taken.
The RPis would be fitted into a tight, aerodynamic
holder.

Blister Pak concept

Figure 6: Schematic design of the mount for the underside of a plane. Credit: Robin Lafever, LBNL.

The final mock-up shows a mount designed
for the belly of any aircraft. Using sturdy plates,
the RPis would be set into a aerodynamic case
and sealed upon the bottom of an airplane. If se-
cured tightly to the plane, the RPis should take
quality images lacking damage from flight vibra-
tions. With a simple nut and bolt design, this mir-
rors an upgraded version of the assembly from our
first flight. Following the initial flight, a protective
case would be necessary due to unpredictable wind
conditions. Loose wires and unexpected vibrations
could easily prevent data capture. Thus, the "Blis-
ter Pak" design promotes protection for the RPis.

While these designs are in motion to be built,
the lack of consistent funding precludes their phys-
ical prototyping construction.

4 Image Processing with
Python Software

4.1 Development of the Algorithm

The processing software must meet two critical
requirements:

1. The fire is correctly identified in each photo

2. False alarms are minimized by sufficient ver-
ification tests
Two image processing algorithms have been devel-
oped, courtesy of Nicolas Captier, University of
Paris. Knowing that a fire should generally emit
more infrared light than weakly reflected sunlight,
we deduced that perusing the infrared photo for ini-
tial identification of suspect fires would be semi-
reliable.

The original processing software, written in
Python, works relatively effectively for identifying
fires. First, the Python program separates the In-
fraPi’s image into boxes of 10x10 pixels. Then, in

Intensity=0.299«pix[x,y][0]+0.

The following image shows the result of
Python’s scan for pixel intensity throughout the en-
tire infrared picture. The program replaces any sus-
pect fire pixels with bright red pixels. The lucid fire

the infrared image, the computer searches for clus-
ters of pixels more intense than a specified thresh-
old using this relatively simple Python line of script
(Sahami, 2008):

587+pix[x,y][1]40.114*pix[x,y][2]

is clearly illuminated by the massive amount of red
pixels in the vicinity of the fire; however, the re-
flective aluminum surface to the upper left of the
fire appears glaringly bright to the software.

Figure 7: The original processing software’s test for intensity in the infrared picture.The red pixels

denote possible fire candidates.

After thorough examination of the standard
wildfire’s emission spectra, we have concluded that
minuscule trace amounts of blue photons should be
emitted from the flame. In order to remove the false
alarms caused by reflective surfaces, the program
performs a test on the homologous image taken by

the VisiPi. The program narrows its search to only
previously identified fire candidates; with a clearly
visible red pixel, the program recolors any suspect
pixels that have high counts in the red channel and
low counts in the blue channel.

Figure 8: The finished result of the original processing software. The few red pixels on the fire denote a

successful identification of the fire.

Although yielding a promising result, the beta
software’s algorithms are imperfect. The thresh-
old counts of red and blue pixels in each respective
channel must be manually set, and as of yet, we
have no efficient way of automatically doing so.
Furthermore, only about ten percent of the fire is
correctly identified, whereas the rest is left as un-

suspected candidates.

In an effort to perfect the system, we have
established a new parameter for the second test
placed on the images taken by the VisiPi. In our
new processing software, we retain the first exami-
nation for high intensity pixels in the infrared pho-
tos.

Figure 9: The result of the initial detection for intense pixels. The red pixels represent the program’s

identification of fire candidates.

With the highly reflective leaves misidentified
as a fire, a new test is used to reduce false alarms.
The new program sifts through the suspicious pix-
els of the infrared photo and makes sure the pixels
fit this new parameter:

R>G>B
In general, after analyzing individual pixels

from hundreds of photos of fire, we have deduced
that red pixel counts must be higher than green
pixel counts, which must be higher than blue pixel
counts. Thus, after running the infrared photo
through this trivial test, the following result yields
in Figure 10.

10

Figure 10: The finished result of the new detection software. The red pixels clearly encompass most of

the fire and no false alarms are alerted.

4.2 Flight Confirmation of Algorithm

On August 7th, 2015, we flew on a Cessna 172
to verify the processing software’s effectiveness.
With a flame about a half a meter wide in a tar-
get’s backyard, we flew over several times to test
the detection software from about 300 meters in the
air. Unfortunately, the VisiPi became disconnected
due to a loose power cable during takeoff. Regard-

less, we followed through with the flight test and
searched for the staged fire.

Without pictures from the VisiPi to reduce false
alarms, we had to rely on the InfraPi’s images to
detect fires. Thus, lowering exposure time to an
optimal setting would be the only efficient way to
reduce background sunlight. In Figure 11, various
pictures at different exposures are displayed.

Figure 11: Flight images from an altitude of 300 meters, while the photo on the fire right seems com-
pletely black, its exposure time proves optimal. From left to right, the images were taken with exposure

times of 3333, 333, and 33 us, respectively.

11

As shown in the first image of Figure 11, back-
ground light and saturation of images is an ex-
treme issue. At high altitudes, tree leaves can be
highly reflective and appear bright in our process-
ing infrared images. Hence, by reducing the expo-
sure time to around 100 us, we could winnow out
the flame’s infrared signal from the background re-
flected sunlight. Since the fire’s light directly emits
towards the camera’s detectors while sunlight must
be reflected, reducing exposure time increases the
contrast between the two respective signals. The

longer the camera lens is open, the more dimly re-
flected light would be detected; therefore, the ex-
treme reduction of exposure time effectively iso-
lates the fire’s intense heat signal. Even without the
VisiPi’s images to reduce false alarms, the Python
software found multiple images with the fire at low
exposure times. Pictured in Figure 12 is one of
many photos of target fires from an airborne test,
and Figure 13 shows the Python software’s detec-
tion of the fire.

Figure 12: Initial picture before execution of the Python software to detect the fire. The fire can be seen
as a distinct white dot in the middle of the right-hand side of the photo. This photo was taken with an

exposure time near 50 us.

12

Figure 13: Product of our Python algorithm for detecting fires. The candidate fire is replaced by a lucid
red pixel by the Python software. The red pixel denotes the target fire’s location.

At a remarkably low exposure time, or quick
shutter speed, most of the reflected light from the
sun is reduced from the picture. Using Google
Maps, we confirmed the target fire’s location and
verified the successful detection. Without any false
alarms, the VisiPi’s pictures were not required to
identify the candidate fire. With proper reduction
of background reflected sunlight, our Python pro-
cedure can easily distinguish fires.

5 Discussion and Conclu-
sions

The experimental results appear to affirm the relia-
bility of the new processing software. The new pro-
cessing software identifies wildfires at a near per-
fect accuracy on the condition that red flames can
be seen in the VisiPi’s images. The PiCamera sys-
tem can take pictures, align them, and identify fires
if present. Having been verified by multiple flight
tests, the accuracy of the system sparks new hope
for early recognition of fires. A framework process
for detecting fires can be represented as follows:

13

Take infrared and visible
pictures with the InfraPi
and VisiPi. respectively

Scan infrared
image for high
luminosity pixels

ter R =G

Check candidate pixels in
the visible light image for
those that fit the parame-
B pixel counts

Alert the fire depart-
ment of high certainty fire

Figure 14: Flowchart of the FUEGO PiCamera fire detection system.

Notably, the prototype PiCamera fire detection
system inspects heavily processed images from
cheap camera boards. Ideally, the system should
be redesigned to scan raw images with less issues
of white balance and unnecessary processing. The
project is hindered by these issues:

1. GPS System: When analyzing the initial pic-
tures from FUEGO'’s first flight, we painstakingly
had to manually match each image’s location with
Google Maps to find potential fires. Since we were
simply looking for fires in target locations with no
image analysis software in place, manual analysis
of the pictures was arduous, yet necessary. With
a real georeferencing GPS in place, each image
would ideally have a stamp in the metadata with
the exact coordinates of the image. Courtesy of Dr.
Pennypacker, an Adafruit Ultimate Pi Hat GPS has
already been purchased, but the installation of the
hat seems to disable network configuration abili-
ties through tampering with necessary GPIO pins.

Hence, the Raspberry Pis are still left barren of any
GPS system. Hopefully this issue can easily be re-
solved by perhaps reconfiguring the current Ulti-
mate GPS Hat to work concurrently with the Pi, or
installing a new system. In foresight, the location
of an image is critical to the detection and extin-
guishing of a potentially fatal fire.

2. Image Saturation: When first analyzing im-
ages, we found that the pixels around fires and ex-
tremely reflective surfaces were completely satu-
rated, meaning the pixel count for R,G, and B were
all 255. Saturated pixels are hard to analyze be-
cause we essentially cannot differentiate the iden-
tity of saturated pixels from each other. Hence,
we attempted to lower exposure times, creating less
saturated pixels and images. If the lens is open for
less time, less light will be allowed in. Lower ex-
posure times resulted in better pictures, but we still
had the issue of white saturated images in suppos-
edly "infrared" pictures. If a flame appears white,

14

the computer erroneously assigns it high values of
green and blue pixels, as well as the correct high
number of red pixels, to make a white pixel. If we
want to examine the spectral and physical proper-
ties of the fire’s photons, high counts of green and
blue pixels would deceivingly imply high counts
of green and blue photons on the detectors. At first
we blamed poor processing on saturation, but white
balance became the dormant culprit.

3. Automatic White Balance: As a camera
takes a picture, it automatically performs white bal-
ance to create an appealing picture for the human
eye. Without white balancing the images on the
InfraPi, pictures would only have pixels in the red
channel, creating an unappealing, yet more scien-
tifically accurate red image. What was originally
blamed on saturation is now known to be an is-
sue of white balance. The "infrared" photos are
put through an automatic processing software in
the cameras that balances the bright, intense pix-
els of the fire to white. Thus, the white pixels of
the fire have large counts near 255 of pixels in the
green and blue channels. As we know that few, if
any, green and blue photons can get through the
visible light filter, these pseudo pixels are clearly a
result of processing, or camera tricks to appeal to
the eye. We need to turn off white balance and get
raw data from before the camera’s preset process-
ing; however, this proves slightly easier said than
done. Turning white balance off requires one to
set the gains of the camera, which are values the

FUEGO team is unsure of. Thus, we look to utiliz-
ing raw Bayer data.

4. Raw Bayer Data: Since the camera photo-
sensors are actually made of a Bayer array of little
R,G,B sensors, analyzing the spectral properties of
the light hitting the detectors is convoluted. Devel-
oped by Kodak, the Bayer filter is an array made
25 percent R, 25 percent B, and 50 percent G. The
larger amount of green detectors mimics the ratio
of green cones to blue and red cones in human
eyes. Essentially, the raw data from a Bayer fil-
ter of photo-sensors retrieves a third of the light a
normal camera would receive using three separate
detectors and estimates the quantities of other pixel
values through a process called interpolation. Sim-
ply put, the raw data that is demosaiced into RGB
but not processed through white balance is the best
data we can potentially obtain from the cameras.
We hope to analyze the true spectral properties of
the fire. As of now, we look for high intensity pix-
els in the infrared pictures; with raw data, we may
be able to look for the pixels with the highest num-
ber of pixel counts in the red channel, instead of
examining overall brightness. For scientific usage,
a pre-processed image is far superior to an appeal-
ing image to the eye. Through much research, there
seems to be an attribute in the "Picamera.array"”
module that allows raw Bayer data capture, which
we have used; however, we have had trouble inter-
preting the messy raw data files.

15

Figure 15: Unexpected result of raw data capture from Raspberry Pis. The image is heavily tinted green

and separated into three panels for unknown reasons.

For an unresolved reason, the raw, unpro-
cessed images appear unusually green; however,
this makes sense as the Bayer filter consists of a
mosaic pattern that is 50 percent green. Ideally, a
raw image would provide a better indication of the
true wavelengths of light that hit the PiCamera’s
detectors, but the supposedly pre-processed images
prove difficult to be used analytically. Our results
should not discourage future pursuit of raw data
images. An image void of post processing such
as white balance should supply spectral details in
the pixel counts, which can easily be analyzed by
a Python script. The next step to perfecting the
FUEGO system is obtaining and analyzing clean
raw data images.

Despite the multitude of unresolved issues, the
system is stable and can effectively take pictures in
a timely manner while accurately identifying fires.
With more funding and greater public interest, even
the elegant mounts presented in Section 3 can be

built. Remarkably, simply by checking for inten-
sity in an infrared image and confirming the pa-
rameter R >G >B, the cost-effective PiCameras can
locate fires with high certainty. With a few tweaks
to the system, the FUEGO RPi system may be able
to detect a real wildfire in the near future.

Moreover, as affirmed by the FUEGO flight
test, proper reduction of exposure time can ac-
centuate the fire while dimming reflected sunlight.
Even without the VisiPi’s images in flight, the fire
detection system worked, enhancing the reliability
of FUEGO. The FUEGO PiCamera system can op-
erate on land and in flight at an altitude of up to
300 meters. As the PiCamera’s fire detection sys-
tem hopes to bolster support for the much larger
FUEGO unit, our results enlighten bright hope for
the future of the project. If successfully imple-
mented, the FUEGO system promises to stop forest
fires around the world and better humanity’s stan-
dard of living.

16

Acknowledgments

Special thanks to Carl Pennypacker for guiding us
throughout the project and always being delight-
fully supportive. Courtesy of Dr. Pennypacker,
we have been able to expand our scientific knowl-
edge and help the environment. We are grateful for
Robin Lafever’s unwavering dedication to push the
team forward and supply us with necessary mate-
rials. Again, we would like to acknowledge both
Carl’s and the Lawrence Berkeley National Labo-

ratory’s hospitality.

References

Pennypacker C., FUEGO: a satellite system for
rapid location of wildfires (SPIE, 2014).

Sahami, Mehran., CS106A Stanford University
lecture, 2008

Wang W., Captier N., Tian E. FUEGO’s First
Flight, 2015

17

