Optical smoke detection with fire tower cameras

October 16, 2018 Kinshuk Govil, John Soltis, Zachary, Bahlakoana, Morgan, Lucas, Tim, and Carl

Overview

- Grounded (real and literal)
 - Exists today and already capable of detecting fires
- ~200 existing webcams on fire towers
 - Multiple organizations: HPWREN, AlertWildfire, and USGS
 - Some 24hrs, others daylight only
 - Fixed (good for detecting new fires) vs. PTZ (good for monitoring known fires)
 - Range up to tens of miles from good vantage points
 - Expanding network
- Machine Learning based smoke detection
 - Recently rebuilt to improve accuracy -- preliminary results

Machine Learning Details

- Supervised training with two classes: smoke and not-smoke
 - Retrain last layer of Google Tensorflow Inception v3 model with ~10000 images
 - Training full deep network would be more accurate, but requires millions of labeled images
- Inception v3 expects 299x299 pixel images (images are resized)
 - Large images with small amount of smoke get shrunk too much to detect smoke
 - Automatically segment images into approximately 300x300 pixel squares
- Training data for smoke
 - Match Calfire's historical fire data with camera locations to search archived images
 - Manually crop smoke sections
- Training data for not-smoke
 - Take pictures one day before fire start, and auto segment

Sample results (before and after)

Sample results 2 (before and after)

Sample results 3 (before and after)

Improving accuracy of predictions

- Accuracy already 95%+ without significant tuning
- Reducing false positives
 - Augment not-smoke dataset with images triggering false positives
 - Clouds, fog, haze, snow, and glare
 - Post filters
 - Compare results from previous days for same segment
 - Check weather data
- Reducing false negatives
 - Variable segment size (small for top, big for bottom)
 - Augment smoke images in training set
- Test on images of historical fires to evaluate

Results and future

- Able to detect when fires within minutes if fire is within few miles
 - Range will increase over time
- Takes only 10 seconds per image on single CPU
 - Scaling will improve with code optimization and parallel processing
- Can send email alerts with location and image
 - Plan to add fire severity over time
 - Use fire spread models to predict progression of detections to determine severity
 - Fast growing and those affecting inhabited areas would be high severity
- Expanding camera network will increase coverage
- Cross cueing and data fusion with satellite imagery will make it even more useful